Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana

نویسندگان

  • James C W Locke
  • László Kozma-Bognár
  • Peter D Gould
  • Balázs Fehér
  • Éva Kevei
  • Ferenc Nagy
  • Matthew S Turner
  • Anthony Hall
  • Andrew J Millar
چکیده

Our computational model of the circadian clock comprised the feedback loop between LATE ELONGATED HYPOCOTYL (LHY), CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and TIMING OF CAB EXPRESSION 1 (TOC1), and a predicted, interlocking feedback loop involving TOC1 and a hypothetical component Y. Experiments based on model predictions suggested GIGANTEA (GI) as a candidate for Y. We now extend the model to include a recently demonstrated feedback loop between the TOC1 homologues PSEUDO-RESPONSE REGULATOR 7 (PRR7), PRR9 and LHY and CCA1. This three-loop network explains the rhythmic phenotype of toc1 mutant alleles. Model predictions fit closely to new data on the gi;lhy;cca1 mutant, which confirm that GI is a major contributor to Y function. Analysis of the three-loop network suggests that the plant clock consists of morning and evening oscillators, coupled intracellularly, which may be analogous to coupled, morning and evening clock cells in Drosophila and the mouse.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathematical modeling of an oscillating gene circuit to unravel the circadian clock network of Arabidopsis thaliana

The Arabidopsis thaliana circadian clock is an interconnected network highly tractable to systems approaches. Most elements in the transcriptional-translational oscillator were identified by genetic means and the expression of clock genes in various mutants led to the founding hypothesis of a positive-negative feedback loop being the core clock. The identification of additional clock genes beyo...

متن کامل

The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose.

Circadian clocks are 24-h timing devices that phase cellular responses; coordinate growth, physiology, and metabolism; and anticipate the day-night cycle. Here we report sensitivity of the Arabidopsis thaliana circadian oscillator to sucrose, providing evidence that plant metabolism can regulate circadian function. We found that the Arabidopsis circadian system is particularly sensitive to sucr...

متن کامل

Modelling genetic networks with noisy and varied experimental data: the circadian clock in Arabidopsis thaliana.

Circadian clocks in all organisms include feedback loops that generate rhythmic expression of key genes. We model the first such loop proposed for the clock of Arabidopsis thaliana, the experimental model species for circadian timing in higher plants. As for many biological systems, there are no experimental values for the parameters in our model, and the data available for parameter fitting is...

متن کامل

LIGHT-REGULATED WD1 and PSEUDO-RESPONSE REGULATOR9 form a positive feedback regulatory loop in the Arabidopsis circadian clock.

In Arabidopsis thaliana, central circadian clock genes constitute several feedback loops. These interlocking loops generate an ~24-h oscillation that enables plants to anticipate the daily diurnal environment. The identification of additional clock proteins can help dissect the complex nature of the circadian clock. Previously, LIGHT-REGULATED WD1 (LWD1) and LWD2 were identified as two clock pr...

متن کامل

Light and circadian regulation of clock components aids flexible responses to environmental signals

The circadian clock measures time across a 24 h period, increasing fitness by phasing biological processes to the most appropriate time of day. The interlocking feedback loop mechanism of the clock is conserved across species; however, the number of loops varies. Mathematical and computational analyses have suggested that loop complexity affects the overall flexibility of the oscillator, includ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular Systems Biology

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2006